FPV-Auto: Unterschied zwischen den Versionen

Aus Hackerspace Ffm
Wechseln zu: Navigation, Suche
K (Bildgrößen angepasst)
(Reifen)
Zeile 52: Zeile 52:
 
[[Datei:20180604 201225.jpg|320px]]
 
[[Datei:20180604 201225.jpg|320px]]
 
[[Datei:20180604 201232.jpg|320px]]
 
[[Datei:20180604 201232.jpg|320px]]
 +
 +
Ø = 5,5 cm<br>
 +
U = π·f = 17,3 cm
  
 
== Akkus ==
 
== Akkus ==

Version vom 24. Juni 2018, 22:16 Uhr

Wir wollen ein fernsteuerbares Auto bauen mit folgenden Features:

  • Einfach nachzubauen
  • Selbstgedrucktes Chassis aus dem 3D-Drucker
  • Selbstgegossene Silikon-Reifen mit selbstgedruckten Gießformen für beste Bodenhaftung
  • Energieversorgung: 2x 1x 18650 LiIon Akku (bevorzugt Zellen mit integrierter Schutzschaltung)
  • Antrieb: 4x Mini-Motor mit Getriebe
  • Lenkung: Nur über unterschiedliche Ansteuerung der Motoren
  • Elektronik:
    • Raspberry Pi Zero W mit Kamera für FPV
    • Selbstentwickeltes Board für Stromversorgung, Mototreiber, Batteriemanagement, Servokanäle und NRF24L01+ Funkmodul um einen ATmega328 Mikrocontroller

FPV Control Board

Features und Implementation:

  • Stromversorgung:
    • 3.3V/0.15A mit Enable und Selbsthaltung für ATmega328 - optimiert auf geringen Ruhestrom (nRF24L01+ typ. 12mA)
      • LP5907MFX-3.3/NOPB (LDO, 12uA Iq, Ultra-Low-Noise for RF, SOT-23, 0.45 EUR)
      • TPS70633DBVR (LDO, 1uA Iq, 0.64 EUR, SOT-23)
      • TPS62272 (Buck, 3.3V, 1.23 EUR, 18uA)
      • TPS62740 (Buck, mit mehr Schnickschnack, unter 1uA)
      • TPS62007 (Buck, teuer, größeres Gehäuse)
    • Booster: 3x einstellbar, am besten mit Enable
      • 5.1V/1A für Raspberry Pi (Zero W braucht etwa 240mA, Kamerastrom extra)
      • 4 - 6V/2A für Motoren
      • evtl. separate 5V/1-2A für Servos/Neopixel
      • TPS61230A (2.4A max 5.5V, 1.66 EUR, seltsames Gehäuse)
  • Batteriemanagement:
    • Ideal: Balancer und Ladeschaltung für 2 LiIon in Reihe, min 1A Ladestrom
    • Gibts nicht, aber es gibt Balancer mit LDO Ausgang: bq296xx
    • Reiner Balancer: bq2920x
    • Buck-Boost Charger: bq25703
    • Günstiger Buck Charger: bq24133
  • Motortreiber:
    • Kontrollierbar mit 3.3V Pegeln
    • 2 Motorkanäle für bis zu 9V Vin, 0.8A Motorstrom würde reichen
    • DRV8835 (Sleep wenn VM aus) oder DRV8833 (Sleep 15uA, int. 3.3V Regler) (welcher ist besser?)
  • Pegelwandler:
    • 4x 3.3V -> 5V für 4 Servokanäle (Problem: 328 bringt per PWM nur 2 Servokanäle, besser gleich PCA9685)
    • 2x 3.3V -> 5V für Neopixel
  • Optional: 1 Kanal Class-D Audio-Amp (oder Codec?) für 5V
  • NRF24L01+ Mini-Modul


Motoren


Reifen

20180604 201225.jpg 20180604 201232.jpg

Ø = 5,5 cm
U = π·f = 17,3 cm

Akkus

18650 Akku

Chassis

Da es zwei unterschiedliche Ansätze zur Nutzung gibt

  • Tumbler mit großer Bodenfreiheit und Option über Kopf zu fahren
  • Universal Drohne zur Ausstattung mit größeren Kameras oder Manipulatoren

wurde das Chassis als Baukasten System entwickelt mit dem sich diese und weitere Ansprüche umsetzen lassen. Basis ist der mittlere Rahmen der die Motoren aufnimmt.

  • Maße: 115mm x 72mm x 15mm
  • Aufnahme für 4 12GA Motoren
  • Aufnahme für Raspberry Pi Zero Minikamera

20180624-fpvauto-rahmen.jpg

Für die Tumbler Version werden zwei flache (5mm) Schalen jeweils oben und unten an den Rahmen geschraubt, sie bieten dem Stack aus Raspberry Pi Zero und Drohnen Shield, sowie einer 18650 Zelle Platz

20180624-fpvauto-tumblrschale.jpg 20180624-fpvauto-fpvauto-tumblrconfig.jpg 20180624-fpvauto-fpvauto-tumblrchassis.jpg


Für die Standard Version werden zwei 12mm Schalen verwendet, das Chassis bietet dann zwei 18650 Zellen Platz, der RasPi Stack steh hier senkrecht.

20180624-fpvauto-stdschale.jpg 20180624-fpvauto-fpvauto-stdconfig.jpg 20180624-fpvauto-fpvauto-stdchassis.jpg